5.25=-16t^2+20

Simple and best practice solution for 5.25=-16t^2+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5.25=-16t^2+20 equation:



5.25=-16t^2+20
We move all terms to the left:
5.25-(-16t^2+20)=0
We get rid of parentheses
16t^2-20+5.25=0
We add all the numbers together, and all the variables
16t^2-14.75=0
a = 16; b = 0; c = -14.75;
Δ = b2-4ac
Δ = 02-4·16·(-14.75)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{59}}{2*16}=\frac{0-4\sqrt{59}}{32} =-\frac{4\sqrt{59}}{32} =-\frac{\sqrt{59}}{8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{59}}{2*16}=\frac{0+4\sqrt{59}}{32} =\frac{4\sqrt{59}}{32} =\frac{\sqrt{59}}{8} $

See similar equations:

| -20x^2-3x-15=0 | | Y=x+1/6 | | -6.7-2x=2.3 | | r-20=19 | | 4(2x+3)=6-(x-2) | | 9x-2x+6=48 | | 6–2w=4 | | 6x-1/6=3/1 | | -19=5x-2(3x-8)-2 | | 4=y-12/y | | -7y-42=-6y-2 | | -20x^2+15x-3=0 | | (0.25)^x=16 | | 10x+5=9x+20 | | 4(2x+3)=6-(2-x) | | X-1/x+5=7/8 | | 10x+14=22+6x | | 9x-15=-42 | | 2/39x-4)=1/3(2x-6) | | 4x3=5x-4 | | 3/5(15d+20)-1/6(18d-12=38 | | a^2+14a=15 | | 3x-5=6x-4x | | 4–2n=2 | | 4(1-4x)=-172 | | 3x−5=6x−4x | | (-4x+63)=(x-5)(x+5) | | (5x-1)x÷2=0 | | ​9/8​​=​p/​12​​ | | –3x+4=2(x–3) | | x÷5=10÷40 | | 5x+72=112 |

Equations solver categories